友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
八万小说网 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

1965-零的历史-第14部分

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



。我们知道都拉很熟悉雷斯奇(Reisch)的书,因为;正如艺术历史学家埃尔文·帕诺夫斯基(Erwin Panofsky,1892…1968德裔美国艺术历史学家)指出,麦林考利亚图形周围的随身用具可以在另外的木版画中找到:与雷斯奇书中的一样。都拉的目的是什么?难道他是为了比较不信教世界的挫折(雷斯奇书中的毕达哥拉斯变成了研究几何学的麦林考利亚)和基督教带来的满足:圣·杰罗姆为了基督教折磨波伊提乌?    
    然而亚当·雷斯是正确的:算术中,熟练用算盘或用手指来计算要比用羽毛管笔计算速度快(除了那个杰出的约翰·佩尔戈瑞瓦)。那么他们胜利的意义是什么呢?这就是我们很久以前就问的关于身体和思想分歧的问题。无言的操作会把你和锐气与荣誉带到算术的最远边缘——但是你一旦穿过边界进入代数学和所有的数学领域,它就会让你束手无策。在那里,思想通过符号传播,符号被称一种可以讨论自己的语言;提升形式远离他们限制的主旨,变为抽象真实的。它是一种可以让我们详述关系的语言,给我们无声的行动提供持久的支持。    
    当零作为一种操作用的符号加入这种语言时,这个语言自己形成了一个体系:通过改变阿拉伯数字的位置来改变其数值大小。这就打开了给予表示数量和表示作用于它们的操作的符号以相同地位的大门,反过来,现在全部符号都服从于抽象的作用,而且不断地服从于其它的,每一个都享有特权,定义着这个语言的标记:无论一个操作或关系在哪个层次中,在它们的常用语法矩阵中,它都是用一个和其余一致的符号来表达。作为这个语言中的一部分,这些符号可以看作是超越它们自己的。


第三部分 费尽周折第23节 令人愉快的天使(1)

    零的力量    
    既不是奥维德(Ovid,罗马诗人)传说中的博西斯(Boucis,贫苦老妇,因与其夫菲勒曼(Philiman)款待下凡的神而得到好报)和菲勒曼这对虔诚的老两口;也不只是德高望重的亚拉伯罕(圣经人物,相传为希伯来人始祖)和撒拉(Sarah);我们中的每一个,个体或群体,都曾经在毫不知情的情况下款待过一个天使。我们只是不知道站在门边的陌生人是谁,不知道在每时刻闪在我们思想的窗口一闪而过的成千上万的信号中的哪一个,不知道我们浏览而且跳过,忽略过的符号中的哪一个,聚集着可以揭开秘密的巨大力量,哪一个指向我们面前四散的光线的焦点。    
    零一不小心就跌进了文艺复兴时期,这时阿拉伯数字已成为我们计算中不可缺少的。但象所有故事中有法术的助手一样,零是如此谦卑,如此不动声色地清理我们的垃圾箱,我们却很少留意,也不够尊敬。一旦它成为一个象其他数字一样的数字时,总在我们参加舞会时它被用来打扫家庭。    
    你知道在故事中大人回家时是什么情景:喜欢恶作剧的小孩疾步走开或者藏起来,但看上去总留下了恶作剧的令人不安的痕迹。看看我们发现了什么。我们认为在第七章已经解决了一个问题, 因为太大而不能表达任何东西,它可以是任何一个数字。但如果a是0,它还成立吗? 和 或 一样毫无意义吗?可能存在这样的环境,所有的数字,象四目相望的眼睛一样排列在 两边呢?在我们的数学思想中一场革命潜伏在文艺复兴的轮廓下,一旦爆发,我们所有的小小怀疑都会一扫而光——或者变成新的确定不疑的事物。    
    但是直到这种幕后活动的自身向我们施加压力;让我们享受到这项印度人的发现的乐趣,这项发明才在意大利,德国,英国和法国被扩展。他们坚决地阐明了零与加,减,乘,除结合时怎么运作,现在我们理解了它怎样走向疯狂和被迫分开。如果我们仍然不能解决 的麻烦,为什么不转而考察零在幂中的运算呢?这些更复杂的相互作用应该能够弄清楚零和其他数字一样。57意思是5·5·5·5·5·5·5,或者说是78 125;75意思是7·7·7·7·7,即16 807。幂是特殊的乘法,就象乘法是特殊的加。    
    如果我们使零的其他幂都没有问题,05是0·0·0·0·0,仍然是0,但是交换它们的位置,50是什么意思呢?如果你试图围绕这个问题进行哲学的探讨,就会陷入可怕的猫的发源地。它是5一次也不乘自己吗?如果这样,结果是0或者没有意义?既然51=5,50更小还是0?那么5…1呢,更小,是…5吗?听起来不可能。50是5根本不乘方,只是5吗?那么51=5,会导致不可能的1=0的结果。    
    走出这个迷宫的数学方法是一只手紧紧地放在困住你的墙上,跟着你的脚步,不管把你带到哪里。我们理解57是什么意思,也理解54。也同样理解57•;54吗?当然,那是11个5相乘,7+4个。 呢?写出来看看:    
    有什么方法来简化这个分数吗?可以免于做完所有的乘法再相除吗?是的。这里隐含着 ,有四个 ,所以1•;1•;1•;1=1,还剩5•;5•;5。换句话说,    
    在57•;54中把指数相加得到511,同样简单地, 中进行减法7…4得到53。    
    这是我们需要的线索,接下来回到迷宫深处米诺陶洛斯(minotaur,希腊神话中的半人半牛怪)那里。任意一个数字减去自身都等于零,——比如7。因此, , 正好等于1,因此50=1。既然5没有任何特殊性,这个规律一定普遍适用:即a0=1,a可以是任何值。这个结果可能奇怪而且出乎意料,却是可靠的。    
    但是现在我听到一个声音,好象来自主显节(宗教节日,1月6日)的观众。“任何一个数字都适用吗?”它问,“如果a=0,00等于1吗?”很不幸不能使用我们的新规则,因为 ,每个 都把我们带回我们假设成立的问题中了。    
    零,象远古的混沌初开,又重新松散,而且在指数领域变得更庞大。它看上去更象舞会上挑起争斗的布里多尼海角的亡命之徒:“躺在地板上,谁能把他放倒?”让我们试试。如果是指数使我们陷入困境,或许还能带我们走出困境。毕竟,它们不就是一个用来帮助我们的符号吗?它们带来简化和促进,它们的意义灵活扩展到除数字计算外的领域(象我们所看到的),已经不是我们的老相识丢番图创造它们时那样了。    
    指数的精彩之处在于,当我们扩展它的含义时,要使新用途与旧有的前后一致,事实证明我们被迫只能用一种方式。事实上,虽然它们是我们的创造,而且我们有自由的想法,但是只能与我们已经创造的那个世界保持一致。这是透过数学对人类状况的伟大洞察。    
    通过把指数扩展到更一般的数字,象负数和分数,试图来理解什么是00,我们对指数相减的理解告诉我们 。换句话说, ,把每个 变成1,等于 ,所以我们不得不定义 ,同样地, 等等。对于任何a, 。    
    那么象 这样的分数指数呢?记得53•;54指数相加得到57。所以 。就意味着 是自己乘以自己等于5的数字——仅有 这样的数字才能满足。同样 ,等等。得到这样的装备之后,我们可以试试把00从地上拉起来。    
    你一定同意03=0(因为03=0•;0•;0),02 =0,01=0。现在我们知道 ,卜哈斯卡瑞证明了 。同样地, 也是0, 等等也都等于0,以这种方式慢慢接近零(使指数趋近于0),这会比断言00=0更令人信服?    
    以下是更加或者同样令人信服的。50,我们自己证明了是1,40和30,20也是,它们每个都等于1,10也是等于1,事实上, 也一定是1,所以 等等也一定是1。因此,如果你以这种方式逐步接近00——指数保持0不变,底数减小趋于0,很显然00=1。    
    我们怎么办呢?是0还是1,或者两个都是,两个都不是?那些为指数发明出过力的人比比皆是:有一个叫尼科尔·俄瑞斯穆(Nicole Oresme),他是诺曼底主教,大约1360年某个时期创造了分数指数——但是没有0指数。100年后有我们上一章提到的物理学家尼古拉斯•;丘凯(NicolasChuquet),他提出了a0 ,但没有分数指数。在互相向对方说明自己的发明时,只有摇头,因为他们对嘲笑他们的趾高气扬的大人物无能为力。还有路德教会的牧师迈克尔·斯梯费尔(Michael Stifel):他因为试图揭开圣经中的数字的秘密而成为一名数学家,60年后丘凯明白了如何使用零和负指数。或许他知道如何去做——但我们只听到他说:“关于与数字有关的绝妙事情我可以写一整本书,但我必须避免而且闭上眼,听之任之。”    
    我们已经拿出了一碗牛奶给零,而且它已经长得结实了,它打算向我们揭示自己的秘密吗?不——但是可能有所转变。零发展成为一种给其他数字赋值的数字已经很久了。现在,在数学向抽象化和普遍性发展趋势的驱使下,它也正在转变为一种知识,给其他知识赋以价值。成为哪种知识呢?当然是零的知识。为了扮好角色,它最初将不得不伪装前行。


第三部分 费尽周折第24节 令人愉快的天使(2)

    懂得蹲下    
    在我们还没有注意到的时候,零的伪装在装备上有了发展:查明数字大体特性的装备。因为数学是一种艺术,它的制造者热衷于为它演出创造新的场景——就象小说家把人物放在特定的背景下,通过人物行为展现情节(因为人物是“命中注定”的)。由于小说是我们现实情形的浓缩,这并不象听起来那么虚假:因为想要知道主人公怎样生活,你只能关注情节的变化。不管怎样,你可能会认为数学象天文学,以很大的尺寸移动,有庞大的数量和无休止的数字。    
    但是想象一下,一个小孩子吹出的浮在夏日空气中的肥皂泡。不管小还是大的,每个都是一个完整的世界,表面闪烁着象陆地一样班驳的色彩。一个数学家也能创造这样的肥皂泡世界:从一个点,然后循环回到原处。举例来说,如果把无穷大的宇宙压缩到0到11,这些数字会有什么奇异的举止呢?它们自身的更深层的真相也会在这个微观世界得到展示吗?做做加法:2+3是5,1+8等于9,但是6+7呢?不可能是13,因为在这个世界中没有13。6+7又等于1,因为经过一圈循环13与1重合。就好象我们在运用有相同间隔的从0到11的钟表进行数学运算。如果我们从1到12一个单位一个单位地移动数字进行计算,就成了我们熟悉的钟表。那就意味着在这个玩具房子一样的世界里,12扮演着0的角色:把它与任何数字相加,都得到这个数字本身。(3点以后的12个小时是3点,11+12=11)    
    如果这作为一个太微不足道而不值一玩的游戏打动了你,那些令人吃惊的人,速算者将严肃地演绎它。他们能很快地告诉你一百万小时以后的时间。假如现在是上午10点,一百万个小时包含了很多个12小时,但是都不会有什么改变,减去这些个12,余下小于12的数目,就是正确的时间。一百万除以12,余数就会告诉你答案。由于余数是4,时间就是上午10点过4小时或者说下午2点。心算这个除法似乎不是一个小技巧。观察一下,100除以12余4,继续相除,得到一连串零,余数一直是4。只需要进行一次除法,我们就可以得出答案,是10+4=14点或者下午2点。    
    如果今天是星期二,一百万年后的今天是星期几?在这里实际上7就是0,我们回到开始的一天。好象日子在一个标有从0到6的钟面上滴答而过,仍然是10 000 000除以7。商并不重要,但是余数重要,它是3,星期二之后三天是星期五,这就是答案。    
    17世纪的法国数学家是最先组织起来,而且研究这种闪光泡泡的欧洲人。但是玛雅人领先于他们很多,他们制定了复杂的历法,仅仅通过除以很大跨度的时间,13或者20或者别的他们基本时间周期的长度,得到的余数而完成历法的。所有的这些发明都有一个生物学依据,当我们让它自由发展的时候,我们的内部时钟都以24小时的生理节奏来运行,我们周围生物世界的每个和谐个体都有自己归于0的数字——这些不同旋转周期的齿轮充分啮合,才使整个生物个体继续下去,乃至进化。    
    这些缩小了的世界生动地展示了艺术是怎样从生活中抽象出来而数学又是怎样从艺术中抽象出来的。在法国人开始清楚地表达他们的闪亮小球之前两个世纪,德国和荷兰的木雕家用黄杨木造出精致而细小的山水画:罗德和她的女儿们;有狩猎野猪和兔子的精细场面;希巴女王拜见所罗门国王情形——每个都是手掌大小。在这些坚果壳上,表示数字的图画,任何一个整数都可以担当零的角色,这种做法给了我们关于重复现象问题的答案。    
    如果在所有这些以不同节奏脉动的“宇宙”之间,在关键的构造上的相似,将是一件精彩的事情。当我们重新审视指数而且看到它们在这些环境中令人吃惊的运作方式,问题便得具体化。例如,最新的密码学的核心领域。现在我们的旅程将把我们从“零”的知识带到“零知识”。    
    思考一下,我们提到的标有从0到6的 “七日钟”。从它们当中任意选择一个你喜欢的正数(象打牌作弊者所说的)——例如3,并且乘6次幂,即36=729。如果除以7,将没有余数,现在用729减去1得到728,除以7后依然没有余数:36…1在这个时钟上也是同样的0。试另外一个数字,例如2。26…1等于63,又是这个系统中的0,以1,4,5或6的任何一个数字的6次幂再减去1,你将得到同样的结果。    
         
    费马    
    这是一个特殊现象吗?因为使用了“七日钟”或者用作指数的6(=7…1)才出现这样现象的吗?非常值得注意的是,答案是不。如果你使用有从0到4五个数字的时钟,每个数字乘4次幂减1,会回到0,比如34…1=80,除以5之后没有余数。为什么在这儿停顿?一个有从0到18的19个数字的钟,把上面的每个数的18次幂再减去1,再除以19都会得到0。(如218…1=262 143,等于19×13 792)不经过计算,我就能知道1322…1可以被23整除,而且(如果你真地想要阿基米德的庞大数字)    
    (273 889 154 767 432)1 111 111 111 111 111 110…1    
    可以被1 111 111 111 111 111 111整除。我们怎么能这么确信呢?因为法国律师,业余数学家皮埃尔·费马(Pierre de Fermat)的“费马最后定理”最近得到成功证明,这个定理在1640年提出,现在被称作“费马小定理”。如果我们认识到数字的搀杂性理解这个定理就简单得多。5,7,9,23和上面的庞然大物是质数——除1和自身没有其他的因数。任何一个质数(记做p),比它小的任意一个整数(记做a)的p…1次幂再减去1都可以被p整除,费马对这个定理进行了猜测和证明。    
    这么讲他的结论听起来太难以理解,而且太无实质内容。如果这么说会更生动一点:拿p除ap…1…1没有余数。或者这样更多地让你想起劝戒人的禅语,就把这个谜语放在一边,但是保留禅语嘲弄无知的本质:    
    在p的世界里,    
    你不能把ap…1去掉1    
    与什么也没有区别开来。    
     看上去我们已经从用零的符号表示各种不同数字的时代,过渡到了用各种不同的数都可以代表零的时代(在它自己的泡泡里),关于费马小定理最令人眼花缭乱的一点是它不仅揭示了循环周期为p的世界中的共同特性,而且还有面对质数的令人胆寒的忽视。我们正在逐步接近零的知识:给出一个质数,我们无法知道怎样得到或预知相邻的另一个质数;我们知道这对所有的数学家都至关重要。但是它们的伙伴(如果它们有一个的话)总是躲避我们,虽然已经有很多人奉献了毕生精力。    
    这种忽视怎样增加了我们别的方面的知识呢?让我们抽取在各种时期数学上发生的5种不同方式。让你自己保持舒适,品尝一个蛋白稣饼,一盘布丁或者任意一种在伊丽莎白时代称做空盘子的起泡甜食。    
    据透露,编码人最近发明的一项几乎不可破解的密码,正是继续利用我们对质数的忽视。这个非常令人愉快的小把戏在这里被向各色人等公布,它看上去恰好是解码的关键。两个数字,n和e,当你的部门代理人想要向你传送关于鱼雷导向系统的详细说明书时,她仅仅用n和e对消息进行编码,只有你才能解开。那是为什么呢?因为e在n上遵循循环分布的方式,n是你们自己的两个秘密的很大的质数,我们称做p和q(“很大”这里指大约150位)。任何一个知道他们的人都能够破解这个消息。反间谍活动为什么不从n次
返回目录 上一页 下一页 回到顶部 3 5
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!