按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
概率估值
为了导出 F(I)而假设的试验涉及到提出一些有关本题的赌博方式。对依那个函数而作的附加选择带有特定概率的推测需要能够确定附属于那些选择的概率。如何去做呢?
最适合我们效用分析的方法是由L.J.萨维奇充分发展了的“个人概率”方法,他是在布鲁诺·德·芬尼提工作的基础上创立这一方法的。这种方法是说,正象我们所能够设想的,个人在行动时,好象是把一个确定的效用——我们的F(I)函数的一般说法——赋予每一件有可能发生的事件,如果这一事件的确发生了的话,因此,我们也可以设想他在行动时似乎是把一个确定的概率赋予了每个这样的事件。人们假设这些“个人概率”服从概率数学的通常法则:也就是,被指定到一组相互排斥,且穷尽了各种情况的事件上(其中一个必须发生)的概率加总后等于一;被指定到两个互相独立事件上(两个都在发生)的联合概率是被指定到单个事件上的概率的积,等等。
原则上讲。这些个人概率是可以通过一系列假设的实验加以确定的,例如我们在推导F(I)时所引入的那种实验,只要此项概率试验在逻辑上先于那种效用试验,由于后者需要概率为已知,这些假设的概率试验能够为每个人都建立起概率的个人尺度,这些尺度可以用来决定他赋予任何事件的概率值,尽管它们是假设的。
实质上,试验的意图是,一旦特别的一组假设的事件发生,让个人选择他想如何得到报偿。例如,在抛出两枚硬币之前,让个人选择他愿意在(A)两枚都是正面时,还是在(B)出现其他结果(两枚都是反面,一个正面,一个反面)时获得一美元,像你可能猜测的,如果他选择当B发生时得到这一美元,这就意味着他认为B的概率要比A大,而且由于A和B是相互排斥和穷尽了各种情况的事件,故B的概率要大于一半。但是,当然没有任何东西来保证他会选择B。也许他检查了硬币,并发现两枚都是两面皆为正面的欺骗式硬币。注意,效用估值并没有进行。不管他选择A或B,奖赏都一样。他在决定可能发生的情况,在此情况下,他情愿获取其效用的相同的增量,也要注意,这里没有任何事情受到个人赋予他假设的、互相替代的事件的任何效用的影响。他可能会有一种特别想看到正面,而不是任何其他情况出现的热情,所以,如果A发生要比B发生使他可能从事件本身得到更多的效用。但是,他对于他要依此得到奖赏的终局情况的选择并不会影响什么结果发生,只是影响到,如果该结果发生,他是否能从一美元奖赏中获得新增的效用。
就这样的选择来做一个试验,直到你找到实验对象在引发奖励的结果方面无差异的一个选择。例如,假设(A)是一次一枚硬币抛掷的正面,(B)是那次抛掷的背面,并且实验对象表现为无差异的,一半时间选择A,一半选择B。然后把一半概率分配给A,上半给B,或一半分配给一次硬币抛掷的正面。在概率的语言里,他把硬币看作“公平”硬币。
确切说明了个人赋予其1/2概率的一个事件后,我们现在可以通过把那个事件作为引发奖赏的其中一个可供选择的基本事件,来确定他是否把其他事件的概率值估计为多于或少于一半。例如,如果(A)在某一天抛掷硬币出现正面,或(B)英国仍是议会民主制,他将宁愿从那一天起5年之后获得一个确定的奖赏。如果他选择B,我们知道,他把大于一半的概率分配给了那个可能性。
为了得到更加精确的个人概率预测,我们必须建立起一个更加精确的比较尺度。例如,提供奖赏给抛掷两枚硬币所获得的四种可能的结果中的任何一种:(A)两个正面;(B)两个反面;(C)正面和反面;(D)反面和正面。如果其结果引发奖赏对于实验对象是无差异的,我们就得到一组事件,对每个事件,这位实验对象都赋予1/4的概率,而且我们也还得到了两项假设的联合检验,一个假设是通常的数学概率法则适用于他的个人概率,另一个假设是他认为这两次抛掷是相互独立的。
原则上,这类试验会使人们有可能如愿以偿地得到一种较好的个人概率比较尺度,并由此而以任何所希望的精确程度确定他赋予任何假设事件的概率值。
每个人在行动时都象是已把一个个人概率值和一个效用值赋予了任何一个假设的事件,并以使预期效用最大化的方式,在提供给他的各种可能性中进行选择的这两个联合假设,现在是一个原则上未包括任何可观察到的因素的假设。
个人行动时好象他们已把个人概率分给所有可能事件的主张是关于行为的一种假设,不是个人心理的表述或关于个人对于一个事件,比如,英国议会民主的持续将赋予多大的概率这一问题将给予一个有意义答复的主张。如果讨论中的事件不很影响他的生活,或者尽管产生影响,不影响他可以控制的那部分行为,就没有理由说,他应该努力就这样一个问题下决心,并且他无疑将随便答复了事。另一方面,如果他的行为中一个重要的部分将有赖于英国的议会民主是否延续下去(用我们假设的试验的话说,如果那个结果所引发的奖赏或损失相当大),那就值得他花时间去构思一个确定的见解。
个人概率方法回避了有关文献里关于“客观”和“主观”概率的许多争论。个人概率方法能够与那个区别相联系的一种途径是,把那些所讨论的群体同意的概率集划分为“客观的”概率,而把那些他们不同意的概率划分为“主观的”概率。与经济学特别有关的一个例子是弗兰克·奈特强调的“风险”与“不确定性”的区别。实质上,“风险”与所谓客观概率相对应。“不确定性”与主观概率相对应。如果采用个人概率方法,这种区别就大大失去了说服力。
《价格理论》
米尔顿。弗里德曼著
第五章 供给曲线与成本曲线之间的关系
供给曲线的定义
考虑一个二维曲线图,其横轴表示每单位时间的商品数量,纵轴表示每单位商品的价格(图5.1)。图上每一点都表示价格和产量的交点。就特定的一级供方(作为一种特殊情况,也可由单个厂商构成)、一种特定的商品和给定的供给条件(下面要更明确地给出),这里的某些点在这样的意义上是可以达到的,即这些供方愿意按所述的价格供应所述的数量,而其他的点在这样的意义上就不能达到,即这些供方不愿按所述的价格供应所述的数量。这些特定商品的特定供方群体,其供给曲线正是在给定的供给条件下,那些可得和不可得的点之间的分界线。
为了作出完整的描述,对供给曲线必须作以下两个说明:(A)被认为供方可进行选择的各种替代方案,(B)供给曲线划分出两个区域中哪一个包括可获得的点。
举例说明(A),如果供方可以作这样的选择,或者按所述的价格供应所述的数量,或者什么都不供给,则供给曲线是一回事;如果供方的选择是,或者按所述的价格供应所述的数量,或者按此价供应任何较少的数量,供给曲线就完全不同了。总之,我们假设后者是可由供方选择的替代方案。
图5.1表达了(B)的确切含义。图中阴影部分表示可达到的点。图5.1(A)中的供给曲线可用两种方式说明:按特定价格可提供的最大数量,或者说可提供特定数量的最小价格、图5.1(b)中的供给曲线只能用一种方式说明:表示可按一个特定价格供应的最大数。图5.1(c)中的供给曲线只表示可依此供应特定数量的最小价格。象图5.1(b)中供给曲线的负斜率部分,通常被称作“向后弯曲的”供给曲线;图5.1(c)中的供给曲线则被称作“向前倾倒的”供给曲线。图5.1(d)中的供给曲线线段没有完整的定义;如果曲线左面的点是可达到的,它就是一条“向后弯曲的”供给曲线;如果曲线上面的点是可达到的,那么它是一条“向前倾倒的”供给曲线。
关于怎样精确定义“给定的供给条件”,即一般来说让什么样的其他条件保持不变更合适,总有一定的不确定性。然而,这个问题在此与要讨论的题目关系不大,所以我们将活用那些似乎是当前惯例的内容,并将那些最需要明确提及的事情包括在“其他条件”中,其中至少有:(1)技术知识——“技术的状态”;(2)与所生产的商品密切相关的商品的价格(例如,与羊肉供给曲线有关的羊毛价格,就居住住宅的供给曲线而言的工业建筑物的价格);及(3)相对于所考虑的某个特殊供方群体而言的生产要素的供给曲线。
应该说明的是,供给曲线所依以建立的那个“特殊供方群体”,无需包括该线所依以建立的那种“特殊商品”的所有供方。例如,“特殊群体”可能是“衣阿华小麦的生产者”;而商品则可能是一般意义上的小麦,不论其是在衣阿华或其他地方生产的都无关紧要。另举一例,“特殊群体”可能是一个单个厂商,而商品则可能是一个由许多这样一起组成一个产业的厂商所生产的商品。
请注意,上述第三项将特殊群体对生产要素的供给曲线保持不变,因此,当人们的论题,比如说,从一个厂商变到一个产业,它的内容是可以变化的。例如,对厂商来说,某些生产要素的供给曲线可以认为是水平的,所以第三项就相当于使生产要素价格保持不变。对行业来说,这些相同的生产要素的供给曲线可能不是水平的,所以第三项相当于允许其价格沿着供给曲线变化。
还要指出的是,这个供给曲线的定义对短期的和长期的供给曲线都适用。短期和长期曲线的区别在于第三项的精确内含,即要素供给曲线所取的形状。期限越短,要素的数量越大,它们的供给曲线也将采取垂直的或几乎垂直的形状。
一个产业的产量从形式上分解为单个厂商的产量
在图5.2中,曲线SS表示所有提供X商品的X商品供方的供给曲线。这就是一个“产业”供给曲线,表明供给每单位数量商品时的最低价格。这条曲线通常是分析具体问题时令人感兴趣的一条曲线。人们对单个厂商的供给曲线或成本曲线又进行了更深入的研究,是为了弄清SS线的形状为什么是现在这个样子,而不是由于对这类单个厂商有什么特殊的兴趣。
曲线SS具有直接的经验含义。对于与第一、二和三项有关的组定条件而言,事实上将存在某种最低价格,按此价格每单位时间都将有一个特定数量的X商品应市。数量OQ将按最低价格QP应市;数量OQ’将按最低价格Q’P’应市;等等。当然,SS的确切形状要依第一至三项的确切内含而定,尤其是要看产业的生产要素供给曲线的形状。这些要素供给曲线将依赖于允许调整的时间期限,所以短期和长期供给曲线可以认为是由于对第三项的不同解释而产生的。
现在假设需求曲线为DD,市场价格为PQ,产量为OQ。这个产量事实上将由大量不同的厂商提供,人们可以在EP=OQ线上标出每一个厂商供给的数量。例如,Eq1可能是由厂商1供给,q1q2由厂商2供给,q2q3由厂商3供给,等等。假设这些数对每一个价格都像上面那样做一番,并将相对于每个厂商的这些点联结起来,如图5.1对厂商1、厂商2和厂商3所做的那样。那么S1S1就表示厂商1在各种价格水平上对总产量所做的贡献,假定整个产业是沿SS线扩展的。然而,一般来说,它将不是一条“厂商1对商品X的供给曲线”了,即不像这个术语以前所定义的那样。一个原因是,当产业扩张时,要素价格将随着该产业既定的供给曲线所需要的那样发生变化。对单个厂商来说典型的情况是,这将导致与此有关的要素供给曲线的移动,从而引起供给条件的变化。另一个原因是,当该产业扩张时,个别厂商的技术条件可能发生变化,虽然对整个产业来说可能不存在这种变化,这也会导致供给条件的变化。S1S1或许能称为厂商1的准供给曲线。同理,S1S1和S2S2之间的水平距离,表示厂商2在各种价格水平上对该产业产量所做的贡献。
这种解释暗含着允许在不同价格水平上供给产量的厂商数量的变化。在低于S2S3曲线与纵轴相切的那点的价格水平以下,厂商1、厂商2或厂商3将完全不会供给任何产品,在这样价格水平下,这些厂商将不会“进入”该产业。价格较高时,厂商2和厂商3将“进入”该产业,价格更高时——高于S1S1与纵轴相切之点时——厂商1也将进入。由SS线显示的供给的实际扩张,一般来说既是每年厂商分别扩大产量的结果,也是厂商数量增加的结果。
在该产业供给曲线的每一点,譬如P点,都暗示着存在一个生产相应数量的X时使用的生产要素数量的某种集合。例如,把各项生产要素称为A、B、C等,那么按价格QP出售的产量OQ,是通过使用一定量的A、B、C生产的;譬如说,使用量为 a’、b’、c’等。产量OQ’同样是使用各种要素譬如a’、b’、c’等生产的。给定的对该产业生产要素供给曲线,相对于产量OQ,这些数量包含着一定的生产要素价格,譬如说Pa、Pb、Pc等;而相对产量OQ’则有P’a、P’b、P’c等。如果所有要素的供给曲线都是水平线,则所有产品的这些价格都是相同的;否则,不同产量的价格是不同的,所以对SS上(和以后在S1S1、S2S2等上面)的每一点都暗含地存在着一个生产要素价格的集合。
按照马歇尔的说法(见《原理》,第344页)我们可以通过细分SS线的纵坐标(如PQ),来表示产品的供给数量和价格及要素价格之间的关系,正像我们细分横坐标(图5.2中的EP)那样。
图5.3说明了这一点。要在给定的条件下生产一项产出OQ将使用数量为OA的A。每单位产出的OA的单位数量为OA/OQ。因而,OA/OQ·Pa就是在每单位产出中使用的A的总量价格;这个数在图5.3中由QP1表示。同理,如果OB是用于生产产出OQ的B的数量,Pb是每单位B的价格,那么P1P2=OB/OQ·Pb;这样总供给价格PQ可以再分成用于生产OQ数量的X的生产要素供给价格。注意在国5.3底部,A、B等的尺度与X的尺度是连在一起的,在这些尺度之上的那个同等的水平距离一般来说不是指同等的数量。例如,设OQ是OQ’的4/3;并不能说OA是OA’的4/3,或者OB是OB’的4/3,因为用于生产OQ要素组合与个产OQ’的不一定是相同的。如果A的供给比B的供给更具有弹性,则当X的产量增加1/3时,很可能所用A的量的增长多于1/3,B的数量增长少于1/3。同样P1Q和P’1Q’一般来说是A的不同规模单位的价格——它们是用于每单位产品(X的)任何数量A的价格,根据上面援引的理由,每单位产品中A的数量在OQ与在OQ’可以是不同的。
就像我们以后所要看到的,如果我们要解释许多厂商的存在,承认厂商规模的经济决定因素存在的可能性,我们就要假定存在单个厂商所特有的许多要素,它们不可能为其他厂商租用或雇用。我们将使用术语企业家能力来描述一个企业所拥有的这样要素的复合物。在勾画图5.3时所暗含的一种解释是,这类要素的价格是指任何必须用来使像QP1、P1P2等的这些线段之和完全等于QP的那个东西。那就是说,如果认为“总成本”包括这类要素的收益,我们的作法总是使“每单位产品的总成本”等于价格。
单个厂商供给曲线和它对其产业产量的贡献之间在形式上的联系
让我们把注意力从产业转到单个厂商,但是在这个时候,不考虑定义单个厂商或其企业家能力的问题。在图5.4中,曲线S1S1是根据图5.2重绘的,表示厂商1将以X的各种价格提供的X的数量,假定已给出该产业生产要素的供给曲线,而且确定该产业沿着它的供给曲线扩张。就像我们已经看见的,在S1S1上的每一点都暗含着存在生产要素价格的某种集合,如Pa、Pb……在d点上;P’a、P’b……在d’点上。
设X的价格为OE’,所以该单个厂商处在点d’上,正在生产数量为oq’的X。在依此画出S1S1的条件下,我们知道,如果X的价格为OE,此单个厂商就将处在d而不是d’。 d和d’之间的差别可以看作是两种力量发生作用的结果:(1)厂商1处于d’上时,根据业已认清的技术和要素市场条件,对商品X的较高价格的反应;及(2)厂商1了解由全体厂商对X的较高价格反应后引起的技术和要素市场条件的变化所作出的反应。
为了区别这两类反应,让我们把由S1S1给定的准供给的曲线的类型,转移到厂商1对商品X的一条供给曲线。那就是说,