友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
八万小说网 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

打开原子的大门-第2部分

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



  自此以后,光谱分析不仅化学家经常用,也成为天文学家的有力手段。天文学家利用光谱,不断地揭露遥远的星球的秘密。
  就这样,物理学家帮助化学家解决了化学的难题,化学家帮助物理学家解决了物理学的难题,他们还共同解决了天文学的难题。
太阳元素
  日全食是天文学家研究太阳的最好机会。这时候,月亮正运转到地球和太阳中间,把太阳完全遮住了。这样就可以看清楚太阳最外层的大气——日冕,还可以看到太阳表面喷出的巨大火焰——日珥。
  1860年7月16日,在西班牙发生日全食。许多天文学家把注意力集中在日珥上,还画下了图。大家都想解释,太阳表面的这种突出物到底是什么。但是日全食只有几分钟的时间,要想仔细研究,得等待下一次机会。 八年以后,1868年8月18日,印度又发生日全食。法国的天文学家詹森带着分光镜,长途跋涉来到印度。日全食开始了,詹森把分光镜的细缝对准了日珥。他看到了几条亮线:一条红的,一条蓝的,还有一条黄的。很清楚,红线和蓝线是氢的谱线。而那条黄线呢?难道是钠的吗?钠应该有两条黄线,可是只观测到一条啊!他想再看看清楚,但是日全食已经过去了。难道又要等上十年八年,到下次日全食的时候再研究吗?
  詹森注意到这几条线很亮,因此他想:不是日食的时候,也许同样能观测到日珥的光谱。
  第二天,太阳又升起在天空中。詹森把分光镜的狭缝对准太阳的边缘,相当于昨天看到的日珥的位置,昨天观测到的光谱又出现在分光镜里。成功了!经过研究,詹森发现那条黄线不是钠的两条谱线,而是在钠的谱线旁边的一条新的谱线。
  詹森立刻写信把他的发现报告法国科学院。当时的交通很不方便,这封信在路上走了两个多月,于10月26日才到达巴黎。
  无巧不成书,在法国科学院收到詹森的信的同一大,还收到了一封从英国寄来的信。这是英国天文学家罗克耶在10月20日写的,报告的是同一件事。罗克耶在英国用同样方法观察了日珥,也发现了那条不属于钠的新的黄线。
  这两封信同时在法国科学院宣读。大家惊叹万分,决定铸造一块金质的纪念牌:一面刻着驾着四套马战车的传说中的太阳神阿波罗像,另一面刻着詹森和罗克耶的头像,下面写着:“1868年8月18日太阳突出物分析”。
  詹森和罗克耶在日珥的光谱中发现了什么呢?就是那条新的黄线。经过查对,这条黄线跟当时已知的各种元素的谱线都不重合。结论只有一个,这条黄线属于一种未知的新元素。
  这种未知的新元素不是在地球上,而是用光谱分析,首先在太阳上找到的。
  罗克耶把这种新的元素命名为helium(希腊文“太阳”的意思)——我国就译作“氦”。
  太阳元素——氦被发现了,但是它有什么样的性质,人们还没法知道。天文学家们猜测:氦可能是一种很轻的气体。
  关于怎样在地球上找到氦的故事,我们下边再讲。
一封读者来信
  罗克耶在发现氦的第二年(1869年),他在英国创办了一种科学杂志,名叫《自然》,这种杂志很有名,一直出版到现在。全世界的物理学家和化学家,没有一个不看这本杂志的。
  1892年,《自然》的9月号上刊登了一篇读者来信,信中说:“我对于最近测得的氮的几个密度值颇有怀疑,希望贵刊的读者们能提供宝贵意见。我用两种方法制得的氮的密度不一样。虽然两个密度相差只有千分之五,但是仍然超出了实验误差的范围。”署名是:“瑞利,1892年9月24日”。
  这是怎么回事?瑞利是什么人?
  瑞利是英国剑桥大学的物理学教授。从1882年开始,他研究各种气体的密度。虽然在上一个世纪,已经有人做过这方面的工作,但是当时的仪器比较粗糙,结果当然不够准确。
  瑞利的实验室里有当时最精密的天平,灵敏度达到万分之一克(0。0001克)。他想把各种气体的密度测得准确一些。
  气体密度就是1升气体的质量,以克数计算。气体的体积会随着温度和压力而变化,所以必须规定,气体的密度是在0摄氏度和1个大气压下(这叫做“标准状态”),每1升的质量。
  为了测量气体的密度,瑞利做了一个大玻璃球。他先仔细地测量出它的容积有多大,然后用真空泵把球内的空气抽掉,称出真空球有多少克。再在球内灌满某种纯粹的气体,例如由电解水得到的氢气,再称有多少克。这就可以算出玻璃球里的氢气有多少克。用玻璃球的容积去除氢气的质量就能得到氢气的密度。
  测量了氢气测量氧气,然后又测量氮气。
  说来简单,做起来却不容易。瑞利对每种气体的密度都要测量好几遍。不仅如此,对于同一种气体,还要用不同的方法制出它的纯粹的气体,分别进行测量,看看结果一样不一样。
  比如说测量氧气的密度,瑞利先用电解水制造的氧气,又用氯酸钾加热分解制造的氧气,还用高锰酸钾加热分解制造的氧气,分别进行测量。只有对以上三种方法制造的氧气,测得的密度都一样,才算得到了可靠的结果。
  氢气和氧气都测准了,但是测量氮气的时候出了问题。
  空气是氧气和氮气组成的,这在18世纪就已经搞清楚了。瑞利把空气通过烧得红热的装满钢屑的管子,这时氧气会与铜化合,生成氧化铜,剩下的就是氮气了。测量这种氨气的密度,结果是1。2572克每升。 
  瑞利又把氧气通过浓氨水,得到氧气和氨气的混合气。把混合气通过赤热的氧化钢管,氨气与氧气反应,生成水和氮气。测量这种氮气的密度,结果是1。2508克每升。
  奇怪!两个结果对不起来,相差0。0064克每升。是不是实验出了差错呢?瑞利又重复做了好几次,结果还是一样。
  为什么两种不同来源的氮气,密度会不一样呢?这中间一定有什么奥秘。于是,瑞利给《自然》杂志写了上面那封信,请大家一同来解答这个难题。
  可是一封回信也没收到。
这次是化学家来帮忙了
  怎么办?一个真正的科学家是不会轻易放过实验中出现的反常现象的。问题得不到解答,瑞利就继续把实验做下去。他用各种不同的方法来制造氮气,再仔细地测量密度。
  他改用赤热的铁屑去除掉空气中的氧气,又用新制成的氢氧化亚铁去除掉空气中的氧气。用这两种方法由空气中制得的氮气,和用赤热的铜屑除掉空气中的氧气而制得的氮气一样,密度仍然是每升1。2572克。
  瑞利用加热亚硝酸铰的方法制造氮气,用赤热的铁屑还原一氧化氮和笑气(氧化亚氮)制造氮气,用次溴酸钠分解尿素制造氮气。结果是,这些化合物分解出来的氮气,密度和从氨气分解出来的氮气的密度一样,都是每升1。2508克。
  瑞利又埋头做了两年的实验。这些实验准确地证明了:由氮的各种化合物制成的氮气密度都一样,比由空气中分离出来的氮气小0。5%。
  1894年4月19日,瑞利在英国皇家学会上作了报告,详细地介绍了他的实验结果。
  报告完了,化学家拉姆赛来找瑞利。拉姆赛说:“两年前,我看到您在《自然》杂志上的那封信。当时我还弄不清楚,为什么氮气会有两种密度。现在明白了。我相信,空气中的氮气一定含有较重的杂质,一种未知的气体。如果您同意的话,我愿意把这个实验继续做下去。”
  瑞利非常高兴拉姆赛能跟他合作来研究这个问题。于是,物理学家和化学家又一次共同解决科学上的难题了。
  在这次会上,还有一位物理学家杜瓦向瑞利提供了一个重要的线索:英国的科学老前辈卡文迪许曾经做过一个实验,他也认为从空气中取得的氮气中含有杂质。
  瑞利一听说这些情况,高兴得几乎要跳起来,他的实验室就是以卡文迪许命名的。在剑桥大学,卡文迪许在100多年前的科学实验记录和资料,都保存得非常好。
  瑞利回去以后,立刻查阅古老的技术档案。果然,卡文迪许在1785年做过一个实验。瑞利看了他的实验记录,感到非常惊讶。
  卡文迪许是个什么人呢?他做了一个什么样的实验呢?
科学怪人和小气泡
  18世纪末,英国伦敦住着一位怪人,他就是卡文迪许。卡文迪许一辈子没有结婚,因为他一见到妇女就说不出话来。他很少出门,他一出来,就会有一群小孩子跟在他的马车后面跑,街上的人也要指指点点,议论纷纷。因为他的穿戴还是他祖父时代的式样,古怪得很。
  卡文迪许是个贵族,很有钱,却不喜欢交际。他出门只去两个地方,一是英国皇家学会的科学报告会,他是皇家学会的会员;二是每周一次的科学家晚会。他的钱都用来买科学仪器和图书。他在自己家中建立了实验室和图书馆。随便什么人都可以去他的图书馆借书,只是要办理个借阅手续,按时归还。卡文迪许自己拿书看,也要写一张借条,上面写着:“某月某日,卡文迪许借到某书一册。”
  卡文迪许整天躲在自己的实验室里做实验。所有的实验,他都做了详细记录,但是很少把他的科研成果整理出来发表。
  1810年,卡文迪许去世了。过了50年,他的实验记录才由物理学家麦克斯韦整理发表。每个科学家看了他的工作都大为敬佩,原来后辈科学家做的许多实验,卡文迪许早就做过了。化学家知道了卡文迪许不仅研究了空气的组成,还第一个把水分解为氢气和氧气,并测定了两者的化合体积是2:1。物理学家知道了是卡文迪许第一个计算出地球的质量。静电作用力跟电荷的大小成正比,跟距离的平方成反比,这个定律卡文迪许比库仑测定的还要早,还要准确。但是物理学课本上还是把这个定律叫做库仑定律,因为卡文迪许没有公开发表他的发现。
  瑞利在英国皇家学会1784年和1785年两年的年报中,找到了卡文迪许的论文,题目是《关于空气的实验》。
  要读懂100多年前的科学论文,需要有一点历史的知识。瑞利知道在上一个世纪氮气刚刚发现的时候,人们管它叫“浊气”。卡文迪许在论文中讲到的“浊气”就是氮气,这正是他感兴趣的问题。
  卡文迪许把两只酒杯装满水银,又把一根U形玻璃弯管的两端分别插人到两只酒杯的水银中,再把起电器的两根导线分别通到两杯水银里。
  摇动起电器,圆玻璃板和毛皮不断地摩擦,摩擦生的电通过导线,积累在水银杯里。过了一段时间,玻璃弯管内电火花就一闪,同时出现红色的烟雾,这是管内空气中的氧气和氮气有一小部分化合生成的二氧化氮。
  卡文迪许将苛性钠(氢氧化钠)溶液滴到玻璃管中,红色消失了:二氧化氮被苛性钠溶液吸收了。这时候弯管内的气体体积就缩小了一些。
  卡文迪许和他的仆人轮流不停地摇着起电器,让玻璃管内不断地放电。最后,空气中的氧气全都与氮气化合了,而生成的二氧化氮又都被苛性钠溶液吸收了。玻璃管中气体的体积缩小到一定程度,就不再缩小了。
  这时候,卡文迪许向玻璃管内送进一些氧气,再开始放电。新加人的氧气又与剩余气体化合,体积又缩小了一些。
  这个实验,卡文迪许和他的仆人轮流不停的摇着起电器,一连做了三个星期。最后,弯玻璃管中只剩下一个很小的小气泡,这个小气泡很顽固,无论怎样放电,它也不肯跟氧气化合。这个小气泡也不可能是剩余的氧气。因为最后,卡文迪许在玻璃管中加入了一点“硫肝”(草木灰的浸出液与硫磺共煮得到的肝脏色溶液,主要成分是多硫化钾),把多余的氧吸收掉了。
  卡文迪许的实验记录得十分详细。他写道:“在弯玻璃管里剩下来一个小气泡,这是由于某种特殊原因不与氧气化合而剩下来的浊气。它不像普通的浊气,而是另一种浊气,因为什么样的电火花都不能使它与氧气化合。”最后,卡文迪许作出结论:“空气中的浊气不是单一的物质,还混有一种不与氧气化合的浊气,总量不超过全部空气的1/120。”
  “啊!原来是这样!”瑞利十分激动。
  瑞利立刻把这情况告诉了拉姆赛。并且立刻在他那个以卡文迪许命名的实验室中,重新做109年前卡文迪许做过的实验了。
  拉姆赛得到很大的启发,也在自己的实验室中继续进行研究。
  他们决心学习那位科学怪人卡文迪许的精神,各自关在自己的实验室里,不把空气中的这种杂质——卡文迪许的小气泡取出来,就不出实验室的门。为了互通情报,他们靠邮递员经常交换实验结果。
重找小气泡
  问题似乎清楚了,空气中的氮气中还有未知的气体,也就是卡文迪许的那个小气泡。可以预料,这种未知气体极不活泼,密度比氮气大。但是要证实这个预料,必需得到这个小气泡,才能研究它的性质,测定它的密度。
  瑞利做实验要比卡文迪许容易多了,因为时代不同了。这时候已经发明了能产生高电压的振荡线圈,所以瑞利不必像卡文迪许那样去摇动起电器,摇了三个星期才得到一个很小的小气泡。
  为了得到更多的那种小气泡,瑞利用一个大圆底烧瓶代替玻璃弯管,倒立在碱水槽里,烧瓶内通人两根金属导线,其尖端相距只有几厘米。通上高压电,两根金属导线的尖端之间就会连续发生电火花,使瓶中空气里的氧气和氮气化合成二氧化氮。另外还有一根玻璃管通到瓶内。通过这根玻璃管,可以喷人苛性钠溶液来快速吸收掉生成的二氧化氮,也可以往瓶内送人氧气和补充新的空气。
  用这个装置,瑞利终于得到一个较大的气泡。这个气泡在电火花下也不跟氧气发生作用。为了除掉气泡中可能有的氧气,他又让它通过一根烧得赤热的装有铜屑的瓷管。这样,氧气就会跟铜反应而被除掉了。
  尽管装置有了改进,为了得到足够供实验用的气体,瑞利也干了好几个月。在这段时间里,他不断地把自己的工作情况写信告诉拉姆赛,同时也经常接到拉姆赛的来信。
  拉姆赛用的是另一种方法。他发现氮气和赤热的镁屑能发生化学反应生成氮化镁。他使已经除去水汽、二氧化碳和氧气的空气通过装有赤热的镁屑的瓷管。结果,大部分气体跟镁化合了,只剩下一小部分气体。他把剩下的气体再一次通过赤热的镁屑,气体的体积又缩小了一些。在第三次通过赤热的镁屑之后,拉姆赛把剩下的气体拿出来测定它的密度。普通氮气的密度是氢气的14倍,而这种剩下的气体,密度却是氢气的14。88倍,果然是一种比氮气重的气体。
  拉姆赛并没有满足这个初步成绩。他把这剩下的气体一次又一次地通过装有赤热的镁屑的瓷管。结果是每通过一次,气体的体积总要缩小一点,密度总要增大一点,变成氢气的17倍,18倍,19倍;最后体积不再缩小了,密度增大到氢气的20倍也不再变了。拉姆赛计算了一下,剩下的气体的体积是原来空气中的氮气的体积的1/80。
  卡文迪许的小气泡得到了。这是一种什么气体呢?这又要用光谱分析了。
  拉姆赛把这种气体装在密闭的玻璃管里,玻璃管的两端封有两根白金丝做的电极,这就是气体放电管。通上了高压电,玻璃管中的气体就闪闪发光。用分光镜检查,发现光谱中有橙色和绿色的话线。这是已知的元素所没有的话线,表明这种剩下的气体的确是一种新的气体元素。
  瑞利在两年前提出的问题,现在完全弄清楚了。用氮的化合物制成的氮气,原来是纯粹的氮气,它的密度是1。2508克每升。由空气中得到的氮气不是纯粹的,里面混有少量密度为1。9086克每升的未知的气体,因而这种不纯的氮气的密度是1。2572克每升。
  就这样,物理学家和化学家合作,又取得了惊人的发现。
  他们已经知道,这种新气体既不跟氧化合,也不跟镁化合。他们正是利用新气体的这种性质,使它跟氮气分开的。
  那么它跟哪些物质化合呢?他们做了许多试验,结果表明,这种新气体跟氢,跟氯,跟氟,跟各种金属,跟碳,跟硫,都不发生化学反应。不管加温也好,加压也好,用电火花也好,用铂黑作触媒也好,它还是不跟任何物质起反应。根据这个性质,科学家给新气体元素起了个名字叫做argon(希腊文“懒惰”的意思)——我国译作“氩”。
第三位小数的胜利
  1894年8月7日,拉姆赛给瑞利去了一封信,建议俩人一起宣布他们的新发现。经过几天准备,8月13日,他们来到了英国的科学城牛津。那时候,牛津正在召开自然科学家代表大会,各门科学家共聚一堂。他
返回目录 上一页 下一页 回到顶部 3 2
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!