友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
八万小说网 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

认识与谬误-第23部分

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



  experiment)中解决了这个问题。该术语是由培根(Bacon)引入的,牛顿采用了它,因为实验是在两个这样的观点之间裁决的。一个重要的例子是傅科实验,该实验表明光速在水中比在空气中小,这使发射说站不住脚了,并作出有利于振动假设的裁决。伽利略关于金星周相的发现决断支持哥白尼体系,因为这些现象能够从哥白尼体系推导出来;关于胡克对预期的自由落体偏离竖直方向的观察以及傅科的摆实验,情况也相似。     
  第十八节     
  假设可能在十分不同的方面和程度上是成问题的。为了说明泵的吸力,人们想出众所周知的自然厌恶真空的假设。假如我们无论在何处、在任何环境下遇到真空,都可以维护这个观点。另一个假设把同一现象建立在归因于空气重量的压力的基础上。虽然空气的重量到那时已被证明,但是在托里拆利(Torricelli)实验和帕斯卡的工作之前,尤其是在法国多姆山省的检验之前,这个说明无论如何依然是假设,因为只有那些事件表明,上述一切现象能够毫无例外地被说明,既不存在对另外的平行说明的要求,也不存在这样的余地。虽然直率提出的一个说明是自由的发明,另一个说明只是由于真实的要素而奏效,但是二者在初次提出时都是假设性的。另一个例子是借助重力说明宇宙的运动。事实上给定的重力加速度的观念经适当概括被引入天文学。我不能同意F.希勒布兰特的看法:假设在牛顿的重力理论中未起作用。真实的情况确实是,在完成的叙述中,一切都借助加速度化归为宇宙运动的近似描绘,接近地球表面的粒子加速度作为一个特例平滑地过渡到地上的重力的加速度,以致我们不需要假设。在逻辑上可以想像的是,某个分析开普勒运动的动力学的人,应该采纳借助与太阳半径的平方成反比、且沿着太阳半径的向心加速度描绘它们的概念,但是在我看来,这在心理学上似乎是不可思议的。在没有指导的物理学观念的情况下,某人将如何正好跌入加速度,为什么没有偶然碰到一阶或三阶微分系数呢?任何人将如何在把运动分解为两个方向的无限多的方式中选择恰恰产生如此简单的结果的方式呢?甚至抛物线的抛射运动在没有重力加速度的指导观念的情况下也难以分析,这个观念只能从简单得多的案例中得到,而且在这里依然被使用着。     
  第十九节     
  科学在它的发展中在猜测和比喻之间运动,这一点在此无法否认;但是,科学愈趋向完美,它就越是转向仅仅对事实描绘。一个事实和其他事实之间的类似帮助我们寻求新性质。在这方面,不管我们发现新的一致还是差异,在无论哪种情况下我们的经验都被提高了:二者在相等的程度上指明事实的性质的新的概念决定。探究者应该在他的前辈停止的地方开始,从而避免丧失先前获得的经验,这在此处恰恰像正在探究的个人、人民和种族的转变一样重要,这种转变保证了多方面的和无偏见的视野。     
  第二十节     
  这样一来,假设由于它的自我消灭的功能,最终导致事实的概念上的表达。让我们回顾一下导致光作为横振动观点的漫长的假定和矫正的系列,这种观点乍看起来是十分冒险的和没有类比,因此被视为可疑的。可是,辨认光线的周期性质像二维空间(与光线方向成直角的平面)中的可求和的截段的行为一样,只不过是该事实的概念表达。以相同的方式,其行为部分像流体、部分像刚体的以太或光传播的空间的性质,也逐渐地在概念上被决定。于是,最终的观点不再是假设,而是事实的可理解性的预设和分析研究的结果。我们能够把这些作为确凿无疑的东西保留下来,即使我们未能找到类似,从来也没有碰到任何横振动或可以支撑它们的流体。假若杨和菲涅耳因为假定的横波难以说明而对它们保持平静,那么科学就会遭受严重的损失,犹如牛顿的重力定律因为类似的疑问而受到压制一样。我们不必避开异常的观点,如果它们有健全的基础的话。须知发现崭新事实的可能性不仅仅存在于较早的探究时期,它继续存在,从未中止过一天。穆勒的限制假设(restricting    
  hypothesis)的准则隐含着,与依然被研究的东西对照,大大高估了已经被发现的东西。     
  第二十一节     
  如果我们的思维是充分抽象的,那么我们应该把它必须具有的概念标记仅仅归于事实。于是,我们从来也不应该被迫消除任何东西,除非由于相同的标志而缺乏通过直觉类比寻找新经验的灵感。这样的纯粹概念的表象能够用来完成部分科学,在这里,没有为仅仅在日益增加的范围内起有益作用的假设留有余地。审慎使用的图像在此处不仅未被排除,而且是极其恰如其分的。存在着我们通过感官直接知觉的事实,仿佛放眼一瞥俯瞰它们似的。另一些事实在我们应用复杂的观察系统、概念和反应之前,是不会显现出来的。人们并未直接看到光是周期的;确实,极短的周期使得千方百计地对付该事实变得很困难。同样地,偏振也不是直接可辨认的。由于与抽象的概念——这些概念无论如何最终建立在直觉观念的基础上——相比,我们更为熟悉直觉观念,更为熟练地运用它们,因此唯有本能告诉我们把光线想像为在直观上相当大的波长的波动,该波动具有与偏振镜的反射面相关的确定的振动平面,以致在类似的试验的指引下,波动的行为会像光线一样。借助这样的观念,我们比借助抽象概念更迅速地获得了光现象的概览。为了适应赫兹的短语,这些观念是事实的图像,而事实的心理结果是事实的结果的图像。我们一旦准确地在那里决定了在概念上与事实重合的图像,它便把直觉的明晰性的优点与概念的纯粹性结合在一起。它现在适宜于毫不勉强地采取新事实可能要求的那样的进一步的证明,比如说电动力学或化学的新事实。     
  第二十二节     
  虽然存在着一种广为流传的看法,即假设在数学中不起作用,但是让我们强调一下,相反地,它们在任何成长的科学领域中都起作用。产生这种观点在于这样的事实:只要数学家表述他们的发展,他们比其他人更多地倾向于消除所有的发展痕迹。决不可能一下子十分明确地认识数学命题,而要事先通过伴随的观察、猜测、思想实验和有形实验以及计算和几何构造,并作好准备才行,这一点早先已经提到了,并被进一步讨论过。         
《认识与谬误》 
恩斯特。马赫著 洪佩郁译       
第十五章  问题    
   第一节     
  当部分的心理适应的结果陷入这样的对立,以致思想在不同的方向被驱动,并打搅得达到我们有意识地和深思熟虑地寻求引导我们通过这一混乱的线索的境地时,于是问题便出现了。思想本身已经适应的稳定而习惯的经验范围,罕见产生问题;如果在这里也有问题产生,至少需要对差异有极大的心理敏感性。然而,如果经验的范围由于某些境况变得比较广阔,思想与迄今未知的、它们不充分适应的事实处于接触,如果被新的适应修正的思想反作用于较早适应的结果,那么大量的新问题便提出来,一般而言文明史,特殊而言科学史,都表明了这一点。当思想和事实、或思想和思想不再一致时,问题就出现了。我们没有能力引证迄今未知的事实,这些事实以未知的方式依赖于我们领域内的环境;它们在我们没有预期或与我们期望对立的情况下违背我们的意志与我们相遇,虽然它们处在我们的工作或研究的视界之外,但是它们还是因机遇而出现,这是由于可能不是没有准则、而是超越于我们的认识范围和影响的环境引起的。而且,正是心理机遇,把思想汇集起来,这些思想在从未进入相互接触的情况下长期存活在个人身上,从而没有接近得足以引起反应,并由此足以创生问题。在大多数案例中,机遇揭露思想和事实、或思想和思想之间的不调和,从而通过使这些裂痕粘合而促进进一步的适应。因此,形成和解决问题不是以较小的作用把机遇卷入其中,而是把机遇作为案例本性的中心方面包括在内。     
  第二节     
  一旦明确地辨认出不调和并提出问题,我们必须寻找答案。具有确定目的和意图的人,在寻求他仅知道它的某些性质,而不知道其他性质的答案时,他的理智活动像回忆某种被忘记的东西的人一样,威廉·詹姆斯(william James)贴切地评论了这一点。所忘记的东西曾经是已知的,在回忆后立即正确地被识别。相比之下,寻求的答案是新的,它要求特别的检验,以表明它是正确的:这是两个案例的差异。如果人们正在回忆忘记的答案,比如说数学代换,那么第二个案例变成第一个比较容易的案例。设我想在此处和现在回忆一个对我来说重要的引文,此时我忘记了精确的词语或来源:我思索我首次获悉它的时间和场合,在当时使我专心致志的内容和我可能阅读的有关著作,其思维方式大概符合引文的作者,我研究所在的地点,我的环境给予的手段和激励等等。倘若我寻找我丢失的长期未使用的工具,我恰恰正是这样行动的。使其导致遗忘的可以得到的联想越众多和越强烈,它将越容易运用它们之中的一个或数个联想,从而把被遗忘的东西显露给意识。     
  第三节     
  与此相当密切的是追随其存在消息的发明的再发现之案例,引入注目的历史例子将说明这一点。在威尼斯,伽利略获悉荷兰人发明了一种光学仪器,使遥远的天体显得更近、更大、更清楚。在他返回帕多瓦后的夜晚,他利用一根铅管和两个透镜成功的改进了望远镜,他把这个刻不容缓的消息寄给他在威尼斯的朋友,他与他讨论了那天前的事情。六天后,他能够在威尼斯展示一个更加完善的仪器。伽利略承认,没有来自荷兰的消息,他永远也不可能想到如此的构造,但是他辩驳这样的反对意见,即仅仅了解荷兰人的仪器存在便大大贬损他自己的发明,因为他的反对者萨尔西(Sarsi)想使人相信:让他们尝试再发明阿契塔(Archytas)的飞鸽或阿基米德的取火镜等等吧。他通过描绘导致他再构造的思想路线诉诸舆论:仪器可以由一片或多片玻璃构成;平玻璃片是无效的,凹玻璃片缩小,凸玻璃片在放大时给出模糊的像;因此,一片玻璃是不充分的,增到两片,撇开平玻璃片,他通过尝试剩下的两种类型的组合获得成功。他似乎以完全模索的方式迈出了最后一步,这在当时是很自然的。开普勒确实是在1604年就发现了眼睛的正确理论,但是比较完备的屈光学叙述,尤其是关于透镜性质的系统概观,直到1611年即伽利略的发明之后两年,也许借助它的帮助,他才能提供出来。至于其余的,伽利略的思想路线没有摆脱主观的机遇因素,它完全可能以另外的方式、特别以比较普遍的和综合的方式出现。设想我们只知道凸透镜的实像,阅读镜和放大镜、凸透镜和凹透镜的经验性质这一切东西当时也都已知。这些对于下面的思考来说是充分的:一个具有长焦距的凸透镜,它的实像能够从比这小的距离清楚地看见,这已经构成了(开普勒)望远镜,它的目镜被眼睛本身代替。如果我们进一步趋近像,并通过在眼睛前面使用放大镜使像避免变模糊,那么我们就拥有实际的开普勒望远镜。如果我们越过像接近物镜,在人眼前的凹镜能恢复清楚的视觉,我们就有荷兰人的望远镜。因此,倘若我们认为像的大小和明晰是构造的目的,我们便达到所有可能的答案。伽利略的路线也许由于他在发现中过于仓促而依然受到限制;由于他把它用来观察天体的机灵观念,他的幸运的、当然也是偶然的拘泥于荷兰人的形式发现变得极其有价值。     
  第四节     
  我们在这里使发明和科学问题的解决处于一个水准,这不需要引起诧异:事实上,它们之间的唯一差别——这并非总是容易坚持的——是与理论目的相对照的实际目的。在科学和技术的历史中有许多例子,在那里关于先辈的成功的信息引起同一问题的等同的或不同的解答。如果再发现者较少遮掩,它们甚至会被更充分地了解,这无疑地是因为它们遇到的怀疑。一个问题的多种解答也不是多余的;相反地,它是十分有益的,因为它通常从不同的角度阐明同一问题。例如,荷兰人利珀希(Lippershey)的偶然发现激起伽利略更多的科学发现和开普勒的截然不同的进路。第二个或和第三个发明者是否具有关于它的比较适意的时机,这取决于他碰巧具有的科学眼力、理智工具和经验。即使在没有答案的情况下从不同的方面提出同一问题,对科学而言也不是无关紧要的,尤其是在问题产生时,倘若它到目前为止一直被视为不可解决的或荒谬的话。在这样的案例中,竞争者相互促进,这决不是成功的最小的先决条件。     
  第五节     
  在考虑进一步的特例之前,让我们一般地考查一下问题解决的方法。古希腊哲学家在与简单的和表达清楚的几何学课题的关联中发明和发展了普遍适用的方法,这些方法在科学探究的方法中依然起重要的作用。普罗克洛斯(Proclus)在他对欧几里得的评论中,把主要功绩归于柏拉图。所提及的三种方法是分析方法(从结果开始,反过来逐渐行进到所承认的前提)、综合方法(从所承认的前提开始,并向结果逐渐行进)和间接证明法或归谬法(证明与结果矛盾的东西是不可能的)。我们不必假定柏拉图单枪匹马地发明了这一切方法,因为它们部分地在他的时代之前就使用了,但是第欧根尼·拉尔修(Dio-genes   Laertius)明确认为他引入了分析方法,并把它继续传给几何学家萨索斯的拉奥扎蒙斯(Laodamus of Thasos)。这三种方法能够用于探究以及证明什么是已知的之中。而且,虽然分析方法和综合方法相互排斥,但是每一个能够直接地或间接的使用。     
  第六节     
  一个简单的例子将阐明综合方法:作一个圆,它与两条相交的共面线G,G’切触,它们中的一个处在点P(图3)。因为对称,与这样两条线切触的圆的中心必然位于等分线S,S’的一个或另一个之上。由于P是切触点之一,中心必须位于与G在P正交的线L之上,这决定了独有的两个中心m,m’,即L与S,S’的交点。各自的半径是mP,m ’P。该例子表明,解必须服从的各种条件是如何被分离的,以便从每一个条件引出解需要的结构。而且,我们看到,科学的程序不同于纯粹的试错法,试错法至少可以近似地解决问题,我们在其中以计划好的方式前进,从而仔细地利用已经了解的或一劳永逸确立的东西。我们仅仅留意已经满足分离的条件的圆族。最后,我们注意到,科学的程序与日常的解难题本质上不同,除非在后一个案例中该领域通常较广阔、较少充分了解或预先探索,以致计划的搜寻更困难。任何几何学作图问题能够容易地以难题的外衣呈现出来,对于甚至以诗句讲出他们的问题的印度数学家来说,充分地了解这一点。         
  第七节     
  设我们在对使用的定理没有先验知识的情况下,不得不解决这同一问题。按照被来自牛顿的某些暗示扩大的古人的实践,我们于是用分析方法着手,认为该问题已被解决,从画具有两条切线 G,G’的任意圆开始,并把与G的切点标记为P。通过审查中心m和半径mP与切线和切点的关联,我们被导至给予我们从G,G’到m和mP的相反程序以及如此作图的定理。       
  为了阐明分析方法的价值,考虑一下多少较为困难的例子:作一个与线G,G’触切的圆,并通过任意一点P(图4)。设与G触切的该圆被给定,它的中心C因而在平分线S上,线CP必定等于在上面垂直于G的垂线CH,这等于半径r。如果我们由此能够找到C,H或r,那么问题将被解决。通过使CH运动通过P,我们看到,存在两个解。让我们把条件表达为方程利用G作为横坐标轴,使tan SOG=a,用x和y=ax表示C的坐标,用m和n表示P的坐标。于是,     
  a 2 x 2 =(x-m) 2 +(ax-n) 2 或者     
  x=(m+an)±{'(m+an) 2 -(m 2 +n 2 )'} 1/2 '这给出了X=OH的作图。在不计算和不利用古代的绘图法的情况下,我们能够这样找到解:考虑与P关于S为对称的点p’,画线P’PQ(图5),然后按照定理=QP·QP’作切点H。第二个解可通过取
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!