按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
证明由之进展的前提是必然的。这一论点的证据可在下面的事实中找到。即当我们反对那些认为他们在证明的人时,我们就说“它不是必然的”,如果我们认为那个事实或者是无条件的,或者是为了论证可以变成别种样子。
从这些论证中可以看出,认为只要前提是被普遍接受和真实的,一个人就获得了正确的本原这种想法是愚蠢的,正如智者们认为知识即是有知识一样。本原并不是被普遍接受的或者不被普遍接受的,而是首先真实于证明所涉及的种,并不是每个真实的事实都为既定的种所特有的。
三段论必须奠基于必然的前提之上,这从下面的论证中也可以明显地看出,如果一个人尽管有着可以采用的证明,却不能解释事实的原因,那么,他就不具有知识。如果我们肯定这样一个三段论,当 A 作为谓项必然属于 C 的时候,结论由此得以证明的中词 B 却并不与其他项处在一种必然的联系中, 那么,他就不知道原因。因为这个结论并不依靠中词,中词可以不是真实的,但结论却是必然的。
再者,如若一个人现在所不知道的东西,尽管他得到过解释,并且他自己和事实都没有变化,他也没有忘记,那么他从前对它也是不知道的。如果中词不是必然的,那它就可能消逝,在那种情况下,尽管他自己及事实依然是不变的,他能解释它,他也不知道事实,因而他以前也不知道它。即使中词实际上并没有消逝,而只是可能消逝,那么结论也会是或然的、偶然的,在这样的条件下,知识是不可能的。
当结论是必然的时,它由之得到证明的中词并非自身是必然的。因为从不必然的前提也有可能得到必然的结论,正如从不真实的前提也有可能达到真实的结论一样。但如果中词是必然的,那么结论也是必然的,正如从真实的前提中得出的结论总是真实的一样。让 A 作为 B 的必然谓项, B 作为 C 的必然谓项,那么 A 属于 C 的结论也是必然的。如果结论不是必然的,那么中词也不是必然的。假定 A 不必然属于 C 却必然属于 B , B 必然属于 C ,那么 A 也必然属于 C ,但这不是原来的设定。
因为如果我们对某一命题有证明知识,谓项必然属于主项,那么很明显,证明所依存的中词必定也是必然的。否则,我们既不能把结论也不能把它的原因认作是必然的。我们要么认为我们知道(尽管我们不知道,即把不必然的东西确定为必然),要么不认为我们知道,无论我们是通过间接的词项知道事实还是直接知道原因,情况都一样。
按照我们所下的定义,不依据自身的属性是不拥有证明知识的,因为它不可能对结论作一个必然的证明。偶然的属性可能不属于主体,而我所谈论的属性正归属于这种类型。可能会有人问,要是结论不是必然的,我们为什么要提出某个确定的前提以便达到某个结论呢?一个人同样可以提出任何偶然的前提,然后陈述结论。对此的回答是,我们应当提出明确的问题,不是因为回答影响结论的必然性,而是因为在陈述它们时,我们的论敌必定陈述结论,并且真实地陈述它,如果属性是真实地属于主体的话。
因为在每个种里,只有依据自身所属的那个特殊种的属性才必然地属于它,所以,很显然,科学证明关于依据自身的属性并且以它们为始点。偶然属性不是必然的,所以我们并不必然知道为什么结论是真实的,即使属性总是属于主体,而不是依据自身而属于,那也不行,如在凭借标示的证明中那样。因为我们不知道作为依据自身的事实是依据自身的,也不知道它的为什么。知道一件事物的为什么是通过它的原因而知道的,因而,中词必定由于自身属于小词,大词必定由于自身属于中词。
【 7 】 从一个种跨到另一个种不可能证明一个事实,例如通过算术证明几何命题。证明有三个因素:( 1 )有待于证明的结论(它是就自身而归属于某个种的属性);( 2 )公理(公理是证明的基础);( 3 )载体性的种及其规定及依据自身的属性由证明揭示。如果种互不相同,如算术和几何,即使证明的基础是同一的,算术的证明也不可能适用于量值的属性,除非量值是数目。在某些情况下转变是可能的。其原因将在下文解释。算术证明总是拥有作为证明对象的种,其他科学亦相同。这样,如果证明是可转换的,种必定是同一的,要么是纯粹的,要么是在某些方面同一。在其他方式上,这显然是不可能的。端词和中词必定属于同一个种:如果联系不是出于自身的,那它必定是偶然的。这就是我们不能通过几何学证明相反者为同一学科所研究,甚至不能证明两个立方体之积是一个立方体的原因。一门科学的命题不能由另一门科学来证明,除非存在着这样一种联系,即一门科学的命题从属于另一门科学的命题。例如,光学的命题从属于几何学,和声的命题从属于算术。几何学也不能决定是否一个不是作为线的给定的属性属于线,并且从它们自己特殊的原则中引申出来,例如,直线是否是所有线中最美的,它是否是曲线的对立面,这些属性适用于线不是由于它们特殊的种,而是由于它们是为其他某个种所共有的性质。
【 8 】 显然,如果三段论的前提是普遍的,那么,这类证明一一总体意义上的证明——的结论必定是永恒的。如果联系不是永恒的,那就没有总体意义上的证明或知识。而只是在偶然的意义上而言,即属性不是普遍地而是在特定的时间和条件下属于主体。要是如此,小前提必定是非永恒的、非普遍的。它是非永恒的,因为这样结论只能是非永恒的;它是非普遍的,因为结论只是在某些情况下真实,某些情况下不真实,所以不可能被证明是真正普遍真实的,而只是在特定的时间中才是真实的。定义的情况亦相同。因为定义要么是证明的本原,要么是一个不同形式的证明,要么是证明的结论。显然,关于间断性发生事物的证明和知识,例如月蚀,仅就它们涉及一特殊种类的事物而言,它们是永恒的,但就它们不是永恒的而言,它们是特殊的。属性可以间断性地归于其他主体,正如蚀之于月一样。
【 9 】 除了从与其种相适合的本原出发外,显然不可能证明这种特殊属性对它主体的归属,所以,知识并不在于从真实的、不证自明的、真接的原则出发的证明,我这样说是因为一个人不可能以这种方式引导一个证明。例如,就像布拉松证明他的把圆形作成正方形的理论一样,这样的论证通过使用一个共同的中词而证明结论。这个中词同样涉及一个不同的主体,因而它们也归属于不同种的主体。这样,它们就使我们知道属性不是作为它自身,而只是偶然地属于它的主体,否则,证明不可能也适用于另一个种。
只有当我们在由于其属性才成为一个属性的主体上,从适合于那个主体本身的本原出发认识一个给定的属性时,我们对它的知识才不是偶然的。例如,只有当我们把“内角之和等于两直角”这一属性认作是属于它由自身而归属的那个主体,并且从适合于这主体的本原来认识时,我们对它的知识才不是偶然的。所以,如果这后一个词项由自身属于它自身的主体,那么中词必定属于与端词相同的种。为算术所证明的和谐的命题是仅有的例外。这种命题是由同样的方式证明的,但却具有着差异。当被证明的事实属于一门不同的学科(因为作为载体的种是不同的)时,事实的根据属于更高的科学,属于那个属性出于自身所归属的事物。从上述可以很明显地看到,对任何属性作无条件的证明是不可能的,除非从它自己的本原出发。不过,在刚才所给的例证中,本原有着共同的元素。
如果这一点清楚了,那么每个种的特有本原不能被证明也就清楚了,因为它们由此获得证明本原是一切存在着的事物的本原。关于这些本原的科学高于一切。如果一个人从更根本的原因中知道一个事实,那他就更真实地知道它,因为当他从它们自身无原因的原因中知道它时,他是从更先在的前提认识了它。这样,如果他在更真实或最真实的意义上知道,那么他的知识就是更真实或最真实的。不过,证明不能应用于不同的种,除了我们已经解释过的几何学的证明应用于力学或光学的命题,算术的证明应用于和声的命题以外。
要确定一个人知道还是不知道是很困难的,因为很难确定我们知识是否奠基于适用于每个种的本原,这些本原构成了真正的知识。我们觉得,如果我们从真实的和首要的前提推出结论,那就获得了科学知识,其实不然,推断必须与科学的原初真理相同类。
【 10 】我把在每个种中不能被证明的事实叫做“本原”,这样,原初真理及由此而证明的属性的意义便被断定了:本原方面的存在必须被断定,属性方面的存在必须被证明。例如,我们断定了“单位”、“直”、“三角形”的意义,但当我们断定单位及几何量值的存在时,其他东西的存在则必须被证明。
在证明科学所使用的本原中,有些是为特殊科学所特有的,有些则是共有的,但只是在类推的意义上共有。因为每一个只就它被包含在与科学相关的种中而言才能被使用。特有的原则,如线或直具有如此这般的性质。共有的原则,如当相等部分从相等物中取走时,剩余者仍相等,只有当它们在同一个种中被断定时才是合适的。如若几何学家不断定普遍的真理而只断定量值的真理,如若算术家只断定数的真理,那么结果相同。它断定其存在并且研究其出于自身属性的那些主体也殊于各门科学,正如算术研究单位,几何研究点和线一样。这些主体的存在和意义皆被断定,但它们的出于自身的属性只有在意义上才被断定。例如,算术断定奇、偶、平方、立方的意义,几何学肯定不可通约、倾斜或接近的意义,但它们的存在为共同的本原以及已经证明的结论所证明。天文学的情况亦相同。
一切证明科学都涉及三个因素:它提出的主体(即它研究其本质属性的种);作为证明的根本基础的所谓的共同公理;第三是它肯定其各种含义的属性。不过,也没有什么阻止有些科学可以不管其中之一。例如,如果种的存在是明显的,就可以略而不论它的存在(因为数的存在不像热和冷那样明显)。或者,如果属性的意义十分清楚,就可以略而不论。正如就共同本原而言,“相等的部分从相等物中减去,剩余部分仍相等”的意义不用断定一样,因为它众所周知。尽管如此,主体、对象、证明的基础这自然的三重划分是有效的。
自身必然真实并且必定被认为是如此的东西不是假设也不是预定。因为证明像三段论一样,所涉及的不是外在的而是内在的逻各斯。反对外在的逻各斯总是可能的,但要反对内在的逻各斯却不总是可能的。一个教师断定一个命题可证明却没有证明它,如果学生接受了它,那它就是一个假设一一不是一般的,而仅是相对于学生而言的假设。如果学生对它没有观念或只具有相反的观念,那么这所作的断定即是预定,这就是假设和预定之间的区别。后者与学生的观念相反,或者是被断定是可证明的,但未经证明而使用。
定义不是假设(因为它们对存在和不存在都不作断定),假设在命题中有地位,定义则只需要被理解。它不是假设,除非倾听被认为是一类假设。假设是由这样的断定所组成的:由于它们的存在,结论便从此而推得。因而,几何学家的假设并不像有些人所坚持认为的那样是虚假的。他们说人们不应使用虚假的东西,几何学家在他所划的线没有一尺长时却断定它为一尺长,不直时断定为直,所以是犯了错误。几何学家并没有从他自己所提到的那条特殊线的存在中推断出什么,他只是从通过图示而阐明的事实中推出自己的结论。进一步,一切预定和假设要么是普遍的,要么是特殊的,而定义则既不是普遍的也不是特殊的。
【 11 】为了使证明可能,并不必然需要形式或与“多”相分离的“一”的存在,但陈述一个众多主体的谓项应当正确却是必然的,否则就会没有普遍的词项。如果没有普遍词项,那就没有中词,也就没有证明。所以在众多特殊的事物之上,必定存在着一个自身等同的事物,但却不与它们分有同一名字。
没有一个证明使用肯定和否定同时都不可的原则,除非它所要证明的结论也是这种形式。大词肯定中词是真实的,否定中词是不真实的,证明为这样的断定所影响,把对矛盾面的否定加到中词上或者加到小词上并没有什么区别。如果我们断定,称谓“人”是真实的东西,称谓“动物”也是真实的——只要“人是动物”是真实的,“人不是动物”是不真实的。那么,即使用“非人”来称谓“动物”也同样是真实的——那么,把“加里亚斯”叫做动物是真实的,即使把“非加里亚斯”叫做动物也是真实的,但把它叫做“非动物”就不真实了。原因在于大词不仅述说中词而且也述说另一个词项或别的词项,因为它具有广泛的含义。所以,即使中词既是它自身也是它的矛盾面,结论仍不受影响。
“每个谓项的肯定或否定必有一真”这一法则通过归谬法被使用在证明中。它并不总是具有普遍性,而仅是充分的,即与种相关。所谓“与种相关”,我的意思是,与作为所讨论的证明主体的种相关,如我们在上面所论述的那样。
所有的科学互相间都使用共同原则(我所谓“共同原则”是指他们用来进行证明的东西,不是他们在对它导出证明的主体,也不是他们证明的联系),辩证法分有一切其他科学的原则,试图普遍地证明共同原则的科学亦相同,例如,每个谓项的肯定或否定必有一真,把相等部分从相等物中取走,剩余部分仍相等,等等。但根据这定义,辩证法就没有领域,也不涉及任何一类对象。否则它就不会通过疑问而进展了。疑问是不可能证明的,因为对相反的事实不可能作出同样结果的证明。这已在关于三段论的著作中指出过了。
【 12 】如若一个三段论的问题与陈述对立面之一方的命题相同,而每门科学都有它自己三段论所依据的命题,那么必定存在着科学的问题,它与由此可以推得适合于科学的结论的前提相应。很显然,并不是每个问题都是几何学的(或医学的,其他科学亦相同),只有其根据与证明几何定理或任何在其证明中所使用的公理与几何学相同的科学定理(如光学)相应的问题才是,其他科学亦相同。几何学家必须根据几何学的本原和结论对这些问题作出解释;但作为一个几何学家,他没有必要对本原作出解释。其他科学的情况亦与此相同。
因而,我们不能向每个专门家问任何问题,专门家也不会回答向他提出的与每个给定的主题相关的一切东西。他只回答属于他自己的学科范围内的问题。一个人作为几何学家跟一个几何学家相辩论,如果他通过从几何学本原中所证明的论点来辩论,那么他显然是适当的,否则就是不适当的。如果他的辩论不恰当,那他显然就不能驳倒一个几何学家,除非出于偶然。所以,不应该在一群不懂几何学的人中讨论几何学,因为他们觉察不出不可靠的论证。这种情况也适用于其他一切科学。
几何问题存在着,那么非几何问题也存在吗?在任何科学(例如几何学)中,是一种什么样的无知仍然提出几何学的问题呢?从虚假的前提中推出的结论,或者虽然虚假却仍是几何学的推论,是无知的结论吗?或者它是一个从一门不同的学科推得的论断吗?例如,音乐问题是与几何学相关的非几何学问题,而设想平行线相交在一种意义上是几何学的,但在另一种意义上却是非几何学的。“非几何学的”与“非节奏的”一样有两种含义。一件事物是非几何学的,在一种意义上是因为它完全缺乏那种性质,在另一种意义上是它拥有这种性质但极其微小。它是在后一种意义上的无知,即从与科学知识相反的前提中推论而得的无知。在数学中,形式的谬误没有这样普遍,因为产生歧义的总是中词,一个词项作一中词的全体的谓项,中词又依次作另一词项的全体谓项,但是谓项并没有说明所有。在数学中,中词可以被智慧之眼清楚地看到,而在辩证的论证中歧义往往容易被忽视。“每个圆都是一个形状吗?”如果人们画一个圆,那么答案是很明显的,“叙事诗是圆吗?”显然不是。
如果某一证明具有归纳的小前提,我们就不应对它提出异议,正如一个只适用于一种情况的前提不是真实前提一样(因为它不适合所有情况,而三段论是从普遍判断进展的),这